LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pre-Drying of Chlorine–Organic-Contaminated Soil in a Rotary Dryer for Energy Efficient Thermal Remediation

Photo from wikipedia

In response to the current problem of the high energy consumption of direct thermal desorption systems when treating soils with a high moisture content, we propose using the waste heat… Click to show full abstract

In response to the current problem of the high energy consumption of direct thermal desorption systems when treating soils with a high moisture content, we propose using the waste heat of the system to pre-dry soil to reduce its moisture. Taking chlorine–organic-contaminated soil as an object, an experimental study on the drying and pollutant desorption characteristics of soil in an indirect rotary dryer was carried out. The results show that the non-isothermal drying process was divided into warm-up and falling rate periods, and no constant period was observed. The higher the rotation speed, the lower the soil outlet temperature and the higher the drying tail gas temperature. Soil outlet and dry tail gas temperatures were lower for soils with a higher moisture content. Benzene and cis-1,2-dichloroethylene are easily desorbed. Therefore, the disposal of dry tail gas should be determined according to the type and concentration of soil pollutants present. The volumetric heat transfer coefficient was found to be 85–100 W m−3 °C−1, which provides a key parameter for the size design of a rotary dryer.

Keywords: organic contaminated; chlorine organic; rotary dryer; contaminated soil; soil

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.