LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling: Activity Concentration of Radon, Thoron, and Their Decay Products in Closed Systems

Photo from wikipedia

The article presents a model for simulating changes in the activity concentration of radon and thoron as well as their progeny in closed or poorly ventilated systems. A system can… Click to show full abstract

The article presents a model for simulating changes in the activity concentration of radon and thoron as well as their progeny in closed or poorly ventilated systems. A system can be considered closed when a stream of radon and thoron flows into a space, but nothing comes out. It was also assumed that there may be devices or installations with a filtering system that would reduce the concentration of radon and thoron decay products. These assumptions may, therefore, correspond to a situation in which, in an isolated chamber, the calibration of radon hazard-monitoring devices is carried out, and nuclides are supplied from an emanation or flow through sources or well-isolated spaces in an environment where the source of nuclides is, for example, radon and thoron exhalation. The differential equations were formulated on the basis of the assumption that the activity concentration of radionuclides of concern in the space is uniform. The equations do not consider possible losses due to diffusion or the inertial or gravitational deposition of aerosols. If these phenomena have a limited impact on changes in the activity concentration of nuclides, the solutions provided may be used to simulate the activity concentration of radon and thoron and their decay products in any confined space assuming different boundary conditions.

Keywords: activity concentration; concentration; radon thoron

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.