LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Land Reclamation on Soil Bacterial Community and Potential Functions in Bauxite Mining Area

Photo from wikipedia

Studying the characteristics of microorganisms in mine reclamation sites can provide a scientific reference basis for mine land reclamation. Soils in the plough layer (0–20 cm) of the bauxite mine… Click to show full abstract

Studying the characteristics of microorganisms in mine reclamation sites can provide a scientific reference basis for mine land reclamation. Soils in the plough layer (0–20 cm) of the bauxite mine plots in Pingguo city, Guangxi Zhuang Autonomous Region, China, with different reclamation years were used as the research objects. The community structure of soil bacteria was analyzed with high-throughput sequencing technology. The results show the following: (1) Reclamation significantly increased the contents of soil nutrients (p < 0.05). (2) The relative abundances of Proteobacteria were high (22.90~41.56%) in all plots, and reclamation significantly reduced the relative abundances of Firmicutes (3.42–10.77%) compared to that in the control plot (24.74%) (p < 0.05). The relative abundances of α-proteobacteria generally increased while the reclamation year increased. The relative abundances of α-proteobacteria and γ-proteobacteria showed significant positive correlations with soil carbon, nitrogen, and phosphorus nutrients (p < 0.01). The relative abundance of Acidobacteria Group 6 showed significant positive correlations with soil exchangeable Ca and Mg (p < 0.01). (3) Bacterial co-occurrence network showed more Copresence interactions in all plots (50.81–58.39%). The reclaimed plots had more nodes, higher modularity, and longer characteristic path length than the control plot, and the keystone taxa changed in different plots. (4) The chemoheterotrophy and aerobic chemoheterotrophy were the most abundant functional groups in all plots (35.66–48.26%), while reclamation reduced the relative abundance of fermentation groups (1.75–11.21%). The above findings indicated that reclamation improved soil nutrients, changed the bacterial community structure and potential functions, and accelerated the microbial stabilization of the reclaimed soil.

Keywords: reclamation; relative abundances; land reclamation; bacterial community; soil

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.