Long-term mining activities have changed the hydrogeochemical evolution process of groundwater and threatened the safe use of groundwater. By using the methods of hydrochemistry and multivariate statistical analysis, this study… Click to show full abstract
Long-term mining activities have changed the hydrogeochemical evolution process of groundwater and threatened the safe use of groundwater. By using the methods of hydrochemistry and multivariate statistical analysis, this study determined the hydrogeochemical evolution mechanism affecting the quality of karst groundwater by analyzing the conventional hydrochemistry data of the karst groundwater of the Carboniferous Taiyuan Formation in Hengyuan Coal Mine in the recent 12 years. The results show that, under the disturbance of mining, the quality of karst groundwater in Taiyuan Formation is poor, mainly because the contents of Na++K+ and SO42− are too high to allow usage as drinking water. The reason for the high content of SO42− in karst groundwater lies in the dissolution of gypsum and the oxidation of pyrite, and the high content of Na++K+ lies in the cation exchange. Influenced by the stratum grouting, the circulation of karst groundwater is improved, the cation exchange is weakened, and the desulfurization is enhanced. In the future, it is predicted that the hydrochemical type of karst groundwater in Taiyuan Formation in the study area will evolve from SO4-Ca·Mg type to HCO3-Ca Mg type.
               
Click one of the above tabs to view related content.