LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of the Wind-Direction Effect on Buoyancy-Driven Fire Smoke Dispersion in an Urban Street Canyon

Photo from wikipedia

When a fire occurs in a street canyon, smoke recirculation is the most harmful factor to human beings inside the canyon, while the wind condition is an essential factor determining… Click to show full abstract

When a fire occurs in a street canyon, smoke recirculation is the most harmful factor to human beings inside the canyon, while the wind condition is an essential factor determining if the smoke is recirculated. This paper focuses on the wind direction’s effect on buoyancy-driven fire smoke dispersion in a street canyon, which is innovative research since the effect of wind direction has not been reported before. In this study, an ideal street canyon model with a height–width ratio of 1 was established, and both the wind velocity and wind direction were changed to search for the critical point at which smoke recirculation occurs. The results show that with an increase in the wind direction angle (the angle of wind towards the direction of the street width), the smoke recirculation could be distinguished into three regimes, i.e., the “fully re-circulation stage”, the “semi re-circulation stage”, and the “non-recirculation stage”. The critical recirculation velocity was increased with the increase in the wind direction angle, and new models regarding the critical wind velocity and the Froude number were proposed for different wind direction conditions.

Keywords: effect; wind direction; street canyon; direction; recirculation

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.