LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficiency Recycling and Utilization of Phosphate from Wastewater Using LDHs-Modified Biochar

Photo from wikipedia

The excessive application of phosphate fertilizers easily causes water eutrophication. Phosphorus recovery by adsorption is regarded as an effective and simple intervention to control water bodies’ eutrophication. In this work,… Click to show full abstract

The excessive application of phosphate fertilizers easily causes water eutrophication. Phosphorus recovery by adsorption is regarded as an effective and simple intervention to control water bodies’ eutrophication. In this work, a series of new adsorbents, layered double hydroxides (LDHs)-modified biochar (BC) with different molar ratios of Mg2+ and Fe3+, were synthesized based on waste jute stalk and used for recycling phosphate from wastewater. The prepared LDHs-BC4 (the molar ratio of Mg/Fe is 4:1) has significantly high adsorption performance, and the recovery rate of phosphate is about 10 times higher than that of the pristine jute stalk BC. The maximum adsorption capacity of LDHs-BC4 for phosphate was 10.64 mg-P/g. The main mechanism of phosphate adsorption mainly includes electrostatic attraction, ion exchange, ligand exchange, and intragranular diffusion. Moreover, the phosphate-adsorbed LDHs-BC4 could promote mung bean growth, which indicated the recovery phosphate from wastewater could be used as a fertilizer.

Keywords: phosphate; adsorption; ldhs modified; phosphate wastewater; modified biochar

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.