LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Creep Characteristics of Layered Rock Masses after Water Absorption Due to Structural Effects

Photo from wikipedia

Affected by the “three highs and one disturbance” (high ground pressure, high ground temperature, high permeability pressure, and strong mining disturbance), deep layered rock mass roadways often display large deformations,… Click to show full abstract

Affected by the “three highs and one disturbance” (high ground pressure, high ground temperature, high permeability pressure, and strong mining disturbance), deep layered rock mass roadways often display large deformations, resulting in accidents and disasters from time to time. This paper aims to study creep characteristics of layered rock masses after water absorption due to structural effects, combined with acoustic emission energy and dominant frequency value analysis. Experimental results show that as the water content decreases, the long-term strength of the rock sample increases, and the damage becomes more severe. Under the same water content state conditions, the rock samples with bedding angles of 0°, 30°, and 90° have high long-term strength and undergo severe failure, whereas rock samples with bedding angles of 45° and 60° have low long-term strength and undergo mild failure. Under the same water content, the initial energy release increases with the bedding angle. Under the same water content, the energy release during failure decreases first and then increases with the increasing bedding angle. The initial energy, the cumulative energy, the initial main frequency, and the main frequency at the time of failure tend to decrease with the increase in water content.

Keywords: rock; water content; creep characteristics; water; energy; layered rock

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.