The flow characteristics around non-submerged spur dikes continuously placed in the channel on the same side with orthogonal angle to the wall were investigated by numerical simulations and experimental measurements.… Click to show full abstract
The flow characteristics around non-submerged spur dikes continuously placed in the channel on the same side with orthogonal angle to the wall were investigated by numerical simulations and experimental measurements. Three-dimensional (3D) numerical simulations with the standard k−ε Model for incompressible viscous flow based on finite volume method and the rigid lid assumption for free surface treatment were conducted. A laboratory experiment was applied to verify the numerical simulation. The experimental data indicated that the developed mathematical model can effectively predict 3D flow around non-submerged double spur dikes (NDSDs). The flow structure and turbulent characteristics around them were analyzed and it was found that a distinct cumulative effect of turbulence exists between the dikes. By examining the interaction rules of NDSDs, the judgment criterion of spacing threshold was generalized as whether velocity distributions at the cross-sections of NDSDs along the main flow approximately coincided or not. It can be used to investigate the impact scale of the spur dike groups on the straight and prismatic channels and it is of great significance for artificial scientific river improvement and the assessment of river system health under human activities.
               
Click one of the above tabs to view related content.