The mARC (mitochondrial Amidoxime Reducing Component) proteins are recently discovered molybdenum (Mo) Cofactor containing enzymes. They are involved in the reduction of several N-hydroxylated compounds (NHC) and nitrite. Some NHC… Click to show full abstract
The mARC (mitochondrial Amidoxime Reducing Component) proteins are recently discovered molybdenum (Mo) Cofactor containing enzymes. They are involved in the reduction of several N-hydroxylated compounds (NHC) and nitrite. Some NHC are prodrugs containing an amidoxime structure or mutagens such as 6-hydroxylaminopurine (HAP). We have studied this protein in the green alga Chlamydomonas reinhardtii (crARC). Interestingly, all the ARC proteins need the reducing power supplied by other proteins. It is known that crARC requires a cytochrome b5 (crCytb5-1) and a cytochrome b5 reductase (crCytb5-R) that form an electron transport chain from NADH to the substrates. Here, we have investigated NHC reduction by crARC, the interaction with its partners and the function of important conserved amino acids. Interactions among crARC, crCytb5-1 and crCytb5-R have been studied by size-exclusion chromatography. A protein complex between crARC, crCytb5-1 and crCytb5-R was identified. Twelve conserved crARC amino acids have been substituted by alanine by in vitro mutagenesis. We have determined that the amino acids D182, F210 and R276 are essential for NHC reduction activity, R276 is important and F210 is critical for the Mo Cofactor chelation. Finally, the crARC C-termini were shown to be involved in protein aggregation or oligomerization.
               
Click one of the above tabs to view related content.