LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zinc in Cellular Regulation: The Nature and Significance of “Zinc Signals”

Photo from wikipedia

In the last decade, we witnessed discoveries that established Zn2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together… Click to show full abstract

In the last decade, we witnessed discoveries that established Zn2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca2+ and Mg2+, Zn2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca2+, redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

Keywords: zinc signals; zinc; regulatory functions; functions zinc; zinc ions; regulation

Journal Title: International Journal of Molecular Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.