LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring the Mechanism of Inhibition of Au Nanoparticles on the Aggregation of Amyloid-β(16-22) Peptides at the Atom Level by All-Atom Molecular Dynamics

Photo from wikipedia

The abnormal self-assembly of the amyloid-β peptide into toxic β-rich aggregates can cause Alzheimer’s disease. Recently, it has been shown that small gold nanoparticles (AuNPs) inhibit Aβ aggregation and fibrillation… Click to show full abstract

The abnormal self-assembly of the amyloid-β peptide into toxic β-rich aggregates can cause Alzheimer’s disease. Recently, it has been shown that small gold nanoparticles (AuNPs) inhibit Aβ aggregation and fibrillation by slowing down the nucleation process in experimental studies. However, the effects of AuNPs on Aβ oligomeric structures are still unclear. In this study, we investigate the conformation of Aβ(16-22) tetramers/octamers in the absence and presence of AuNPs using extensive all-atom molecular-dynamics simulations in explicit solvent. Our studies demonstrate that the addition of AuNPs into Aβ(16-22) solution prevents β-sheet formation, and the inhibition depends on the concentration of Aβ(16-22) peptides. A detailed analysis of the Aβ(16-22)/Aβ(16-22)/water/AuNPs interactions reveals that AuNPs inhibit the β-sheet formation resulting from the same physical forces: hydrophobic interactions. Overall, our computational study provides evidence that AuNPs are likely to inhibit Aβ(16-22) and full-length Aβ fibrillation. Thus, this work provides theoretical insights into the development of inorganic nanoparticles as drug candidates for treatment of AD.

Keywords: mechanism inhibition; atom molecular; exploring mechanism; molecular dynamics

Journal Title: International Journal of Molecular Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.