LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Insensitivity of TASK-3 K2P Channels to External Tetraethylammonium (TEA) Partially Depends on the Cap Structure

Photo by kilyan_s from unsplash

Two-pore domain K+ channels (K2P) display a characteristic extracellular cap structure formed by two M1-P1 linkers, the functional role of which is poorly understood. It has been proposed that the… Click to show full abstract

Two-pore domain K+ channels (K2P) display a characteristic extracellular cap structure formed by two M1-P1 linkers, the functional role of which is poorly understood. It has been proposed that the presence of the cap explains the insensitivity of K2P channels to several K+ channel blockers including tetraethylammonium (TEA). We have explored this hypothesis using mutagenesis and functional analysis, followed by molecular simulations. Our results show that the deletion of the cap structure of TASK-3 (TWIK-related acid-sensitive K+ channel) generates a TEA-sensitive channel with an IC50 of 11.8 ± 0.4 mM. The enhanced sensitivity to TEA displayed by the cap-less channel is also explained by the presence of an extra tyrosine residue at position 99. These results were corroborated by molecular simulation analysis, which shows an increased stability in the binding of TEA to the cap-less channel when a ring of four tyrosine is present at the external entrance of the permeation pathway. Consistently, Y99A or Y205A single-residue mutants generated in a cap-less channel backbone resulted in TASK-3 channels with low affinity to external TEA.

Keywords: cap; task; k2p channels; tea; cap structure

Journal Title: International Journal of Molecular Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.