Most terrestrial plants are able to form a root symbiosis with arbuscular mycorrhizal (AM) fungi for enhancing the assimilation of mineral nutrients. AM fungi are obligate symbionts that depend on… Click to show full abstract
Most terrestrial plants are able to form a root symbiosis with arbuscular mycorrhizal (AM) fungi for enhancing the assimilation of mineral nutrients. AM fungi are obligate symbionts that depend on host plants as their sole carbon source. Development of an AM association requires a continuous signal exchange between the two symbionts, which triggers coordinated differentiation of both partners, to enable their interaction within the root cells. The control of the AM symbiosis involves a finely-tuned process, and an increasing number of studies have pointed to a pivotal role of several phytohormones, such as strigolactones (SLs), gibberellic acids (GAs), and auxin, in the modulation of AM symbiosis, through the early recognition of events up to the final arbuscular formation. SLs are involved in the presymbiotic growth of the fungus, while auxin is required for both the early steps of fungal growth and the differentiation of arbuscules. GAs modulate arbuscule formation in a dose-dependent manner, via DELLA proteins, a group of GRAS transcription factors that negatively control the GA signaling. Here, we summarize the recent findings on the roles of these plant hormones in AM symbiosis, and also explore the current understanding of how the DELLA proteins act as central regulators to coordinate plant hormone signaling, to regulate the AM symbiosis.
               
Click one of the above tabs to view related content.