A series of novel bivalent β-carboline derivatives were designed and synthesized, and in vitro cytotoxicity, cell apoptosis, and DNA-binding affinity were evaluated. The cytotoxic results demonstrated that most bivalent β-carboline… Click to show full abstract
A series of novel bivalent β-carboline derivatives were designed and synthesized, and in vitro cytotoxicity, cell apoptosis, and DNA-binding affinity were evaluated. The cytotoxic results demonstrated that most bivalent β-carboline derivatives exhibited stronger cytotoxicity than the corresponding monomer against the five selected tumor cell lines (A549, SGC-7901, Hela, SMMC-7721, and MCF-7), indicating that the dimerization at the C3 position could enhance the antitumor activity of β-carbolines. Among the derivatives tested, 4B, 6i, 4D, and 6u displayed considerable cytotoxicity against A549 cell line. Furthermore, 4B, 6i, 4D, and 6u induced cell apoptosis in a dose-dependent manner, and caused cell cycle arrest at the S and G2/M phases. Moreover, the levels of cytochrome C in mitochondria, and the expressions of bcl-2 protein, decreased after treatment with β-carbolines, which indicated that 6i and 6u could induce mitochondria-mediated apoptosis. In addition, the results of UV-visible spectral, thermal denaturation, and molecular docking studies revealed that 4B, 6i, 4D, and 6u could bind to DNA mainly by intercalation.
               
Click one of the above tabs to view related content.