LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vitro Screening of Molecularly Engineered Polyethylene Glycol Hydrogels for Cartilage Tissue Engineering using Periosteum-Derived and ATDC5 Cells

Photo by nci from unsplash

The rapidly growing field of tissue engineering and regenerative medicine has brought about an increase in demand for biomaterials that mimic closely the form and function of biological tissues. Therefore,… Click to show full abstract

The rapidly growing field of tissue engineering and regenerative medicine has brought about an increase in demand for biomaterials that mimic closely the form and function of biological tissues. Therefore, understanding the cellular response to the changes in material composition moves research one step closer to a successful tissue-engineered product. With this in mind, polyethylene glycol (PEG) hydrogels comprised of different concentrations of polymer (2.5%, 4%, 6.5%, or 8% (w/v)); different protease sensitive, peptide cross-linkers (VPMSMRGG or GPQGIWGQ); and the incorporation or lack of a peptide cell adhesion ligand (RGD) were screened for their ability to support in vitro chondrogenesis. Human periosteum-derived cells (hPDCs), a mesenchymal stem cell (MSC)-like primary cell source, and ATDC5 cells, a murine carcinoma-derived chondrogenic cell line, were encapsulated within the various hydrogels to assess the effects of the different formulations on cellular viability, proliferation, and chondrogenic differentiation while receiving exogenous growth factor stimulation via the medium. Through the results of this screening process, the 6.5% (w/v) PEG constructs, cross-linked with the GPQGIWGQ peptide and containing the RGD cell binding molecule, demonstrated an environment that consistently supported cellular viability and proliferation as well as chondrogenic differentiation.

Keywords: atdc5 cells; tissue; periosteum derived; polyethylene glycol; cell; tissue engineering

Journal Title: International Journal of Molecular Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.