LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptional Landscape of PARs in Epithelial Malignancies

Photo from wikipedia

G protein-coupled receptors (GPCRs), the largest family of cell receptors, act as important regulators of diverse signaling pathways. Our understanding of the impact of GPCRs in tumors is emerging, yet… Click to show full abstract

G protein-coupled receptors (GPCRs), the largest family of cell receptors, act as important regulators of diverse signaling pathways. Our understanding of the impact of GPCRs in tumors is emerging, yet there is no therapeutic platform based on GPCR driver genes. As cancer progresses, it disrupts normal epithelial organization and maintains the cells outside their normal niche. The dynamic and flexible microenvironment of a tumor contains both soluble and matrix-immobilized proteases that contribute to the process of cancer advancement. An example is the activation of cell surface protease-activated receptors (PARs). Mammalian PARs are a subgroup of GPCRs that form a family of four members, PAR1–4, which are uniquely activated by proteases found in the microenvironment. PAR1 and PAR2 play central roles in tumor biology, and PAR3 acts as a coreceptor. The significance of PAR4 in neoplasia is just beginning to emerge. PAR1 has been shown to be overexpressed in malignant epithelia, in direct correlation with tumor aggressiveness, but there is no expression in normal epithelium. In this review, the involvement of key transcription factors such as Egr1, p53, Twist, AP2, and Sp1 that control PAR1 expression levels specifically, as well as hormone transcriptional regulation by both estrogen receptors (ER) and androgen receptors (AR) are discussed. The cloning of the human protease-activated receptor 2; Par2 (hPar2) promoter region and transcriptional regulation of estrogen (E2) via binding of the E2–ER complex to estrogen response elements (ERE) are shown. In addition, evidence that TEA domain 4 (TEAD4) motifs are present within the hPar2 promoter is presented since the YAP oncogene, which plays a central part in tumor etiology, acts via the TEAD4 transcription factor. As of now, no information is available on regulation of the hPar3 promoter. With regard to hPar4, only data showing CpG methylation promoter regulation is available. Characterization of the PAR transcriptional landscape may identify powerful targets for cancer therapies.

Keywords: pars epithelial; transcriptional landscape; promoter; landscape pars; regulation

Journal Title: International Journal of Molecular Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.