LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptome-Based Analysis Reveals a Crucial Role of BxGPCR17454 in Low Temperature Response of Pine Wood Nematode (Bursaphelenchus xylophilus)

Photo from wikipedia

Background: The causal agent of pine wilt disease is the pine wood nematode (PWN) (Bursaphelenchus xylophilus), whose ability to adapt different ecological niches is a crucial determinant of their invasion… Click to show full abstract

Background: The causal agent of pine wilt disease is the pine wood nematode (PWN) (Bursaphelenchus xylophilus), whose ability to adapt different ecological niches is a crucial determinant of their invasion to colder regions. To discover the molecular mechanism of low temperature response mechanism, we attempted to study the molecular response patterns under low temperature from B. xylophilus with a comprehensive RNA sequencing analysis and validated the differentially expressed genes (DEGs) with quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatic software was utilized to isolate and identify the low-temperature-related BxGPCR genes. Transcript abundance of six low-temperature-related BxGPCR genes and function of one of the BxGPCR genes are studied by qRT-PCR and RNA interference. Results: The results showed that we detected 432 DEGs through RNA sequencing between low-temperature-treated and ambient-temperature-treated groups nematodes. The transcript level of 6 low-temperature-related BxGPCR genes increased at low temperature. And, the survival rates of BxGPCR17454 silenced B. xylophilus revealed a significant decrease at low temperature. Conclusion: in conclusion, this transcriptome-based study revealed a crucial role of BxGPCR17454 in low temperature response process of pine wood nematode. These discoveries would assist the development of management and methods for efficient control of this devastating pine tree pest.

Keywords: low temperature; temperature; response; wood nematode; pine wood

Journal Title: International Journal of Molecular Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.