LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PTO-QuickStep: A Fast and Efficient Method for Cloning Random Mutagenesis Libraries

Photo by claybanks from unsplash

QuickStep is a cloning method that allows seamless point integration of a DNA sequence at any position within a target plasmid using only Q5 High-Fidelity DNA Polymerase and DpnI endonuclease.… Click to show full abstract

QuickStep is a cloning method that allows seamless point integration of a DNA sequence at any position within a target plasmid using only Q5 High-Fidelity DNA Polymerase and DpnI endonuclease. This efficient and cost-effective method consists of two steps: two parallel asymmetric PCRs, followed by a megaprimer-based whole-plasmid amplification. To further simplify the workflow, enhance the efficiency, and increase the uptake of QuickStep, we replaced the asymmetric PCRs with a conventional PCR that uses phosphorothioate (PTO) oligos to generate megaprimers with 3′ overhangs. The ease and speed of PTO-QuickStep were demonstrated through (1) right-first-time cloning of a 1.8 kb gene fragment into a pET vector and (2) creating a random mutagenesis library for directed evolution. Unlike most ligation-free random mutagenesis library creation methods (e.g., megaprimer PCR of whole plasmid [MEGAWHOP]), PTO-QuickStep does not require the gene of interest to be precloned into an expression vector to prepare a random mutagenesis library. Therefore, PTO-QuickStep is a simple, reliable, and robust technique, adding to the ever-expanding molecular toolbox of synthetic biology and expediting protein engineering via directed evolution.

Keywords: mutagenesis library; quickstep; random mutagenesis; pto quickstep; method

Journal Title: International Journal of Molecular Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.