LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Glucobrassicin Metabolites Ameliorate the Development of Portal Hypertension and Cirrhosis in Bile Duct-Ligated Rats

Patients suffering from liver cirrhosis are often complicated with the formation of portosystemic collateral vessels, which is associated with the progression of a splanchnic hyperdynamic circulatory state. Alleviating pathological angiogenesis… Click to show full abstract

Patients suffering from liver cirrhosis are often complicated with the formation of portosystemic collateral vessels, which is associated with the progression of a splanchnic hyperdynamic circulatory state. Alleviating pathological angiogenesis has thus been proposed to be a feasible treatment strategy. Indole-3-carbinol (C9H9NO, I3C) and 3,3′-diindolymethane (DIM), formed by the breakdown of glucosinolate glucobrassicin, are prevalent in cruciferous vegetables and have anti-angiogenesis properties. We aimed to evaluate their influences on portal hypertension, the severity of mesenteric angiogenesis, and portosystemic collaterals in cirrhosis. Sprague-Dawley rats with common bile duct ligation (CBDL)-induced liver cirrhosis or sham operation (surgical control) were randomly allocated to receive I3C (20 mg/kg/3 day), DIM (5 mg/kg/day) or vehicle for 28 days. The systemic and portal hemodynamics, severity of portosystemic shunting, mesenteric angiogenesis, and mesenteric proangiogenic factors protein expressions were evaluated. Compared to vehicle, both DIM and I3C significantly reduced portal pressure, ameliorated liver fibrosis, and down-regulated mesenteric protein expressions of vascular endothelial growth factor and phosphorylated Akt. DIM significantly down-regulated pErk, and I3C down-regulated NFκB, pIκBα protein expressions, and reduced portosystemic shunting degree. The cruciferous vegetable byproducts I3C and DIM not only exerted a portal hypotensive effect but also ameliorated abnormal angiogenesis and portosystemic collaterals in cirrhotic rats.

Keywords: angiogenesis; cirrhosis; i3c; bile duct; portal hypertension

Journal Title: International Journal of Molecular Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.