LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating the Role of VDR and Megalin in Semi-Selectivity of Side-Chain Modified 19-nor Analogs of Vitamin D

1,25-dihydroxyvitamin D3 (1,25D3) is implicated in many cellular functions, including cell proliferation and differentiation, thus exerting potential antitumor effects. A major limitation for therapeutic use of 1,25D3 are potent calcemic… Click to show full abstract

1,25-dihydroxyvitamin D3 (1,25D3) is implicated in many cellular functions, including cell proliferation and differentiation, thus exerting potential antitumor effects. A major limitation for therapeutic use of 1,25D3 are potent calcemic activities. Therefore, synthetic analogs of 1,25D3 for use in anticancer therapy should retain cell differentiating potential, with calcemic activity being reduced. To obtain this goal, the analogs should effectively activate transcription of genes responsible for cell differentiation, leaving the genes responsible for calcium homeostasis less active. In order to better understand this phenomenon, we selected a series of structurally related 19-nor analogs of 1,25D (PRI-5100, PRI-5101, PRI-5105, and PRI-5106) and tested their activities in blood cells and in cells connected to calcium homeostasis. Affinities of analogs to recombinant vitamin D receptor (VDR) protein were not correlated to their pro-differentiating activities. Moreover, the pattern of transcriptional activities of the analogs was different in cell lines originating from various vitamin D-responsive tissues. We thus hypothesized that receptors which participate in transport of the analogs to the cells might contribute to the observed differences. In order to study this hypothesis, we produced renal cells with knock-out of the megalin gene. Our results indicate that megalin has a minor effect on semi-selective activities of vitamin D analogs.

Keywords: role vdr; vdr megalin; pri; investigating role; cell

Journal Title: International Journal of Molecular Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.