LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gas6/TAM System: A Key Modulator of the Interplay between Inflammation and Fibrosis

Photo from wikipedia

Fibrosis is the result of an overly abundant deposition of extracellular matrix (ECM) due to the fact of repetitive tissue injuries and/or dysregulation of the repair process. Fibrogenesis is a… Click to show full abstract

Fibrosis is the result of an overly abundant deposition of extracellular matrix (ECM) due to the fact of repetitive tissue injuries and/or dysregulation of the repair process. Fibrogenesis is a pathogenetic phenomenon which is involved in different chronic human diseases, accounting for a high burden of morbidity and mortality. Despite being triggered by different causative factors, fibrogenesis follows common pathways, the knowledge of which is, however, still unsatisfactory. This represents a significant limit for the development of effective antifibrotic drugs. In the present paper, we aimed to review the current evidence regarding the potential role played in fibrogenesis by growth arrest-specific 6 (Gas6) and its receptors Tyro3 protein tyrosine kinase (Tyro3), Axl receptor tyrosine kinase (Axl), and Mer tyrosine kinase protooncogene (MerTK) (TAM). Moreover, we aimed to review data about the pathogenetic role of this system in the development of different human diseases characterized by fibrosis. Finally, we aimed to explore the potential implications of these findings in diagnosis and treatment.

Keywords: fibrosis; gas6 tam; tam system; tam; tyrosine kinase

Journal Title: International Journal of Molecular Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.