LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aroylhydrazone Schiff Base Derived Cu(II) and V(V) Complexes: Efficient Catalysts towards Neat Microwave-Assisted Oxidation of Alcohols

Photo from wikipedia

A new hexa-nuclear Cu(II) complex [Cu3(μ2-1κNO2,2κNO2-L)(μ-Cl)2(Cl)(MeOH)(DMF)2]2 (1), where H4L = N′1,N′2-bis(2-hydroxybenzylidene)oxalohydrazide, was synthesized and fully characterized by IR spectroscopy, ESI-MS, elemental analysis, and single crystal X-ray diffraction. Complex 1 and… Click to show full abstract

A new hexa-nuclear Cu(II) complex [Cu3(μ2-1κNO2,2κNO2-L)(μ-Cl)2(Cl)(MeOH)(DMF)2]2 (1), where H4L = N′1,N′2-bis(2-hydroxybenzylidene)oxalohydrazide, was synthesized and fully characterized by IR spectroscopy, ESI-MS, elemental analysis, and single crystal X-ray diffraction. Complex 1 and the dinuclear oxidovanadium(V) one [{VO(OEt)(EtOH)}2(1κNO2,2κNO2-L)]·2H2O (2) were used as catalyst precursors for the neat oxidation of primary (cinnamyl alcohol) and secondary (1-phenyl ethanol, benzhydrol) benzyl alcohols and of the secondary aliphatic alcohol cyclohexanol, under microwave irradiation using tert-butyl hydroperoxide (TBHP) as oxidant. Oxidations proceed via radical mechanisms. The copper(II) compound 1 exhibited higher catalytic activity than the vanadium(V) complex 2 for all the tested alcohol substrates. The highest conversion was found for 1-phenylethanol, yielding 95.3% of acetophenone in the presence of 1 and in solvent and promoter-free conditions. This new Cu(II) complex was found to exhibit higher activity under milder reaction conditions than the reported aroylhydrazone Cu(II) analogues.

Keywords: oxidation; base derived; complexes efficient; aroylhydrazone schiff; derived complexes; schiff base

Journal Title: International Journal of Molecular Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.