LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impairment of Autophagy Causes Superoxide Formation and Caspase Activation in 661 W Cells, a Cell Line for Cone Photoreceptors, under Hyperglycemic Conditions

Photo from wikipedia

Microvascular changes are the earliest adverse events in diabetic retinopathy, but recent studies have shown that oxidative stress induced by photoreceptors is associated with the development of the retinopathy. The… Click to show full abstract

Microvascular changes are the earliest adverse events in diabetic retinopathy, but recent studies have shown that oxidative stress induced by photoreceptors is associated with the development of the retinopathy. The purpose of this study was to determine the roles played by superoxides formed by photoreceptors under hyperglycemic conditions on autophagy. To accomplish this, we cultured 661 W cells, a transformed murine cone cell line, with 5.5 or 25 mM glucose in the presence or absence of 3 methyl adenine (3MA) or rapamycin. The superoxides were determined by flow cytometry using hydroethidine as a fluorescence probe. The autophagy activity was determined by changes in the expression of LC3B2 and P62 by immunoblotting. The degree of mitophagy was determined by the accumulation of mitochondria and lysosomes. Apoptotic changes of 661 W cells were determined by the caspase 3/7 activities. Our results showed higher levels of P62 and superoxides in cells cultured in 25 mM glucose than in 5.5 mM glucose. Addition of 3MA caused a significant increase of P62, superoxides, and caspase 3/7 activities in the 661 W cells cultured in high glucose but not in low glucose. These findings suggest that autophagy is important for the functioning and survival of 661 W cells under hyperglycemic conditions.

Keywords: caspase; cell line; hyperglycemic conditions; 661 cells; photoreceptors hyperglycemic; cone

Journal Title: International Journal of Molecular Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.