LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Downregulation of PPARα during Experimental Left Ventricular Hypertrophy is Critically Dependent on Nox2 NADPH Oxidase Signalling

Photo from wikipedia

Pressure overload-induced left ventricular hypertrophy (LVH) is initially adaptive but ultimately promotes systolic dysfunction and chronic heart failure. Whilst underlying pathways are incompletely understood, increased reactive oxygen species generation from… Click to show full abstract

Pressure overload-induced left ventricular hypertrophy (LVH) is initially adaptive but ultimately promotes systolic dysfunction and chronic heart failure. Whilst underlying pathways are incompletely understood, increased reactive oxygen species generation from Nox2 NADPH oxidases, and metabolic remodelling, largely driven by PPARα downregulation, are separately implicated. Here, we investigated interaction between the two as a key regulator of LVH using in vitro, in vivo and transcriptomic approaches. Phenylephrine-induced H9c2 cardiomyoblast hypertrophy was associated with reduced PPARα expression and increased Nox2 expression and activity. Pressure overload-induced LVH and systolic dysfunction induced in wild-type mice by transverse aortic constriction (TAC) for 7 days, in association with Nox2 upregulation and PPARα downregulation, was enhanced in PPARα−/− mice and prevented in Nox2−/− mice. Detailed transcriptomic analysis revealed significantly altered expression of genes relating to PPARα, oxidative stress and hypertrophy pathways in wild-type hearts, which were unaltered in Nox2−/− hearts, whilst oxidative stress pathways remained dysregulated in PPARα−/− hearts following TAC. Network analysis indicated that Nox2 was essential for PPARα downregulation in this setting and identified preferential inflammatory pathway modulation and candidate cytokines as upstream Nox2-sensitive regulators of PPARα signalling. Together, these data suggest that Nox2 is a critical driver of PPARα downregulation leading to maladaptive LVH.

Keywords: ppar; nox2 nadph; ventricular hypertrophy; downregulation; left ventricular

Journal Title: International Journal of Molecular Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.