LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Synthesis Conditions on the Formation of Si-Substituted Alpha Tricalcium Phosphates

Photo by richardrschunemann from unsplash

Powders of α-TCP containing various amounts of silicon were synthesized by two different methods: Wet chemical precipitation and solid-state synthesis. The obtained powders were then physico–chemically studied using different methods:… Click to show full abstract

Powders of α-TCP containing various amounts of silicon were synthesized by two different methods: Wet chemical precipitation and solid-state synthesis. The obtained powders were then physico–chemically studied using different methods: Scanning and transmission electron microscopy (TEM and SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffractometry (PXRD), infrared and Raman spectroscopies (FT-IR and R), and solid-state nuclear magnetic resonance (ssNMR). The study showed that the method of synthesis affects the morphology of the obtained particles, the homogeneity of crystalline phase and the efficiency of Si substitution. Solid-state synthesis leads to particles with a low tendency to agglomerate compared to the precipitation method. However, the powders obtained by the solid-state method are less homogeneous and contain a significant amount of other crystalline phase, silicocarnotite (up to 7.33%). Moreover, the microcrystals from this method are more disordered. This might be caused by more efficient substitution of silicate ions: The silicon content of the samples obtained by the solid-state method is almost equal to the nominal values.

Keywords: solid state; state; conditions formation; synthesis conditions; effects synthesis

Journal Title: International Journal of Molecular Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.