Mitochondria in neurons contribute to energy supply, the regulation of synaptic transmission, Ca2+ homeostasis, neuronal excitability, and stress adaptation. In recent years, several studies have highlighted that the neurotransmitter serotonin… Click to show full abstract
Mitochondria in neurons contribute to energy supply, the regulation of synaptic transmission, Ca2+ homeostasis, neuronal excitability, and stress adaptation. In recent years, several studies have highlighted that the neurotransmitter serotonin (5-HT) plays an important role in mitochondrial biogenesis in cortical neurons, and regulates mitochondrial activity and cellular function in cardiomyocytes. 5-HT exerts its diverse actions by binding to cell surface receptors that are classified into seven distinct families (5-HT1 to 5-HT7). Recently, it was shown that 5-HT3 and 5-HT4 receptors are located on the mitochondrial membrane and participate in the regulation of mitochondrial function. Furthermore, it was observed that activation of brain 5-HT7 receptors rescued mitochondrial dysfunction in female mice from two models of Rett syndrome, a rare neurodevelopmental disorder characterized by severe behavioral and physiological symptoms. Our Western blot analyses performed on cell-lysate and purified mitochondria isolated from neuronal cell line SH-SY5Y showed that 5-HT7 receptors are also expressed into mitochondria. Maximal binding capacity (Bmax) obtained by Scatchard analysis on purified mitochondrial membranes was 0.081 pmol/mg of 5-HT7 receptor protein. Lastly, we evaluated the effect of selective 5-HT7 receptor agonist LP-211 and antagonist (inverse agonist) SB-269970 on mitochondrial respiratory chain (MRC) cytochrome c oxidase activity on mitochondria from SH-SY5Y cells. Our findings provide the first evidence that 5-HT7 receptor is also expressed in mitochondria.
               
Click one of the above tabs to view related content.