LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional Inactivation of Drosophila GCK Orthologs Causes Genomic Instability and Oxidative Stress in a Fly Model of MODY-2

Photo by light51 from unsplash

Maturity-onset diabetes of the young (MODY) type 2 is caused by heterozygous inactivating mutations in the gene encoding glucokinase (GCK), a pivotal enzyme for glucose homeostasis. In the pancreas GCK… Click to show full abstract

Maturity-onset diabetes of the young (MODY) type 2 is caused by heterozygous inactivating mutations in the gene encoding glucokinase (GCK), a pivotal enzyme for glucose homeostasis. In the pancreas GCK regulates insulin secretion, while in the liver it promotes glucose utilization and storage. We showed that silencing the Drosophila GCK orthologs Hex-A and Hex-C results in a MODY-2-like hyperglycemia. Targeted knock-down revealed that Hex-A is expressed in insulin producing cells (IPCs) whereas Hex-C is specifically expressed in the fat body. We showed that Hex-A is essential for insulin secretion and it is required for Hex-C expression. Reduced levels of either Hex-A or Hex-C resulted in chromosome aberrations (CABs), together with an increased production of advanced glycation end-products (AGEs) and reactive oxygen species (ROS). This result suggests that CABs, in GCK depleted cells, are likely due to hyperglycemia, which produces oxidative stress through AGE metabolism. In agreement with this hypothesis, treating GCK-depleted larvae with the antioxidant vitamin B6 rescued CABs, whereas the treatment with a B6 inhibitor enhanced genomic instability. Although MODY-2 rarely produces complications, our data revealed the possibility that MODY-2 impacts genome integrity.

Keywords: drosophila gck; genomic instability; mody; gck; gck orthologs; oxidative stress

Journal Title: International Journal of Molecular Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.