LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Double and Triple Differential Cross Sections for Single Ionization of Benzene by Electron Impact

Photo by julianhochgesang from unsplash

Experimental results for the electron impact ionization of benzene, providing double (DDCS) and triple differential cross sections (TDCS) at the incident energy of 90 eV, measured with a multi-particle momentum… Click to show full abstract

Experimental results for the electron impact ionization of benzene, providing double (DDCS) and triple differential cross sections (TDCS) at the incident energy of 90 eV, measured with a multi-particle momentum spectrometer, are reported in this paper. The most intense ionization channel is assigned to the parent ion (C6H6+) formation. The DDCS values are presented for three different transferred energies, namely 30, 40 and 50 eV. The present TDCS are given for two fixed values of the ejected electron energy (E2), at 5 and 10 eV, and an electron scattering angle (θ1) of 10°. Different features related to the molecular orbitals of benzene from where the electron is extracted are observed. In addition, a semi-empirical formula to be used as the inelastic angular distribution function in electron transport simulations has been derived from the present DDCS result and compared with other expressions available in the literature.

Keywords: ionization; triple differential; ionization benzene; differential cross; cross sections; electron impact

Journal Title: International Journal of Molecular Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.