LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ruthenium(II) and Platinum(II) Complexes with Biologically Active Aminoflavone Ligands Exhibit In Vitro Anticancer Activity

Photo by sharonmccutcheon from unsplash

Continuing our studies on the mechanisms underlying the cytotoxicity of potential drugs, we have described several aspects of the in vitro anticancer activity of ruthenium(II) and platinum(II) complexes with bioactive,… Click to show full abstract

Continuing our studies on the mechanisms underlying the cytotoxicity of potential drugs, we have described several aspects of the in vitro anticancer activity of ruthenium(II) and platinum(II) complexes with bioactive, synthetic aminoflavone ligands. We examined the mechanism of proapoptotic activity of cis-dichlorobis(3-imino-2-methoxyflavanone)ruthenium(II), cis-dichlorobis(3-imino-2-ethoxyflavanone)ruthenium(II), and trans-dichlorobis(3-aminoflavone)platinum(II). Cisplatin was used as a reference compound. The cytotoxicity was investigated by MTT assay. The mechanism of proapoptotic activity of the tested compounds was investigated by evaluation of caspase-8 activity, cytometric analysis of annexin-V positive cells, and mitochondrial potential loss measurement. The results showed that ruthenium compounds break partially or completely the cisplatin resistance by activating the caspase 8-dependent apoptosis pathway and loss of mitochondrial membrane potential. Platinum compounds also have a cytostatic effect, but their action requires more exposure time. Potential mechanisms underlying drug resistance in the two pairs of cancer cell lines were investigated: total glutathione content, P-glycoprotein activity, and differences in the activity of DNA repair induced by nucleotide excision. Results showed that cisplatin-resistant cells have elevated glutathione levels relative to sensitive cells. Moreover, they indicated the mechanisms enabling cells to avoid apoptosis caused by DNA damage. Pg-P activity has no effect on the development of cisplatin resistance in the cell lines described.

Keywords: ruthenium; aminoflavone; platinum; anticancer activity; vitro anticancer; activity

Journal Title: International Journal of Molecular Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.