LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Early Bone Healing on Hydroxyapatite-Coated and Chemically-Modified Hydrophilic Implant Surfaces in an Ovine Model

Photo from wikipedia

Implant topography affects early peri-implant bone healing by changing the osteoconduction rate in the surrounding biological environment. Implant surfaces have been designed to promote faster and stronger bone formation for… Click to show full abstract

Implant topography affects early peri-implant bone healing by changing the osteoconduction rate in the surrounding biological environment. Implant surfaces have been designed to promote faster and stronger bone formation for rapid and stable prosthesis loading. Early peri-implant bone healing has been observed with a sandblasted, acid-etched implant that was chemically modified to be hydrophilic (cmSLA). The present study investigates whether early peri-implant bone healing extends to a rough surface implant with a high crystalline hydroxyapatite surface (TSV MP-1 HA). Three implants were randomly placed in porous trabecular bone within both medial femoral condyles of 10 sheep. Early peri-implant bone stability was measured at 3- and 6-weeks healing time following implant insertion. Results indicated a similar implant stability quotient between the implants at insertion and over time. The significant increase over time of reverse torque values with respect to insertion torque (p < 0.001) did not differ between the implants. However, the bone-to-implant contact of TSV MP-1 HA was significantly higher than that of cmSLA implants at 6 weeks (p < 0.01). These data validate previous findings of a hydrophilic implant surface and extend the observation of early osseointegration to a rough surface implant in porous trabecular bone.

Keywords: implant surfaces; early peri; implant bone; peri implant; bone healing; bone

Journal Title: International Journal of Molecular Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.