LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Vitamin D on the Vasoactive Effect of Estradiol in a Rat Model of Polycystic Ovary Syndrome

Photo from wikipedia

We examined the vasoactive effect of estradiol in a rat model of early PCOS and the influence of vitamin D deficiency (VDD). We created a model of chronic hyperandrogenism and… Click to show full abstract

We examined the vasoactive effect of estradiol in a rat model of early PCOS and the influence of vitamin D deficiency (VDD). We created a model of chronic hyperandrogenism and VDD in adolescent female Wistar rats (N = 46) with four experimental groups: vitamin D supplemented (T-D+), VDD (T-D-), hyperandrogenic and vitamin D supplemented (T+D+), and hyperandrogenic and VDD (T+D-). T+ groups received an 8-week-long transdermal Androgel treatment, D-animals were on vitamin D-reduced diet and D+ rats were supplemented orally with vitamin D3. Estrogen-induced vasorelaxation of thoracic aorta segments were measured with a wire myograph system with or without the inhibition of endothelial nitric oxide synthase (eNOS) or cyclooxygenase-2 (COX-2). The distribution of estrogen receptor (ER), eNOS and COX-2 in the aortic wall was assessed by immunohistochemistry. VDD aortas showed significantly lower estradiol-induced relaxation independently of androgenic status that was further decreased by COX-2 inhibition. COX-2 inhibition failed to alter vessel function in D+ rats. Inhibition of eNOS abolished the estradiol-induced relaxation in all groups. Changes in vascular function in VDD were accompanied by significantly decreased ER and eNOS staining. Short-term chronic hyperandrogenism failed to, but VDD induced vascular dysfunction, compromised estrogen-dependent vasodilatation and changes in ER and eNOS immunostaining.

Keywords: estradiol; effect estradiol; vdd; vasoactive effect; vitamin; estradiol rat

Journal Title: International Journal of Molecular Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.