LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Formation of High-Conductive C Subunit Channels upon Interaction with Cyclophilin D

Photo by richardrschunemann from unsplash

The c subunit of the ATP synthase is an inner mitochondrial membrane (IMM) protein. Besides its role as the main component of the rotor of the ATP synthase, c subunit… Click to show full abstract

The c subunit of the ATP synthase is an inner mitochondrial membrane (IMM) protein. Besides its role as the main component of the rotor of the ATP synthase, c subunit from mammalian mitochondria exhibits ion channel activity. In particular, c subunit may be involved in one of the pathways leading to the formation of the permeability transition pore (PTP) during mitochondrial permeability transition (PT), a phenomenon consisting of the permeabilization of the IMM due to high levels of calcium. Our previous study on the synthetic c subunit showed that high concentrations of calcium induce misfolding into cross-β oligomers that form low-conductance channels in model lipid bilayers of about 400 pS. Here, we studied the effect of cyclophilin D (CypD), a mitochondrial chaperone and major regulator of PTP, on the electrophysiological activity of the c subunit to evaluate its role in the functional properties of c subunit. Our study shows that in presence of CypD, c subunit exhibits a larger conductance, up to 4 nS, that could be related to its potential role in mitochondrial toxicity. Further, our results suggest that CypD is necessary for the formation of c subunit induced PTP but may not be an integral part of the pore.

Keywords: cyclophilin; conductive subunit; formation; subunit; high conductive; formation high

Journal Title: International Journal of Molecular Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.