The aim of the study was to evaluate the influence of thermocycling on the shear bond strength of self-adhesive, self-etching resin cements luted to human dentin and computer-aided design/computer-aided manufacturing… Click to show full abstract
The aim of the study was to evaluate the influence of thermocycling on the shear bond strength of self-adhesive, self-etching resin cements luted to human dentin and computer-aided design/computer-aided manufacturing (CAD/CAM) ceramics. Three modern self-adhesive dental cements (Maxcem Elite, RelyX U200, Panavia SA) were used to lute three CAD/CAM ceramics (IPS Empress CAD, IPS e.max CAD, IPS e.max ZirCAD) onto the dentin. One conventional cement (Panavia V5) served as a control. After preparation, the samples were subjected to thermocycling as a method of artificial aging of dental materials applied to simulate long-term use in oral conditions. Shear bond strength was evaluated according to PN-EN ISO 29022:2013-10 and failure modes were observed under a light microscope. Statistical analysis was performed. The study demonstrated that a combination of ceramics and cements directly impacts the bond strength. The highest bond strength was observed in Panavia V5, lower in Panavia SA and Maxcem Elite and the lowest–in RelyX U200. Adhesive failure between human dentin and cements was the most common failure mode. Moreover, thermocycling highly decreased bond strength of self-adhesive, self-etching cements.
               
Click one of the above tabs to view related content.