LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of Protoplast Isolation and Transformation for a Pilot Study of Genome Editing in Peanut by Targeting the Allergen Gene Ara h 2

Photo by scw1217 from unsplash

The cultivated peanut (Arachis hypogaea L.) is a legume consumed worldwide in the form of oil, nuts, peanut butter, and candy. Improving peanut production and nutrition will require new technologies… Click to show full abstract

The cultivated peanut (Arachis hypogaea L.) is a legume consumed worldwide in the form of oil, nuts, peanut butter, and candy. Improving peanut production and nutrition will require new technologies to enable novel trait development. Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR–Cas9) is a powerful and versatile genome-editing tool for introducing genetic changes for studying gene expression and improving crops, including peanuts. An efficient in vivo transient CRISPR–Cas9- editing system using protoplasts as a testbed could be a versatile platform to optimize this technology. In this study, multiplex CRISPR–Cas9 genome editing was performed in peanut protoplasts to disrupt a major allergen gene with the help of an endogenous tRNA-processing system. In this process, we successfully optimized protoplast isolation and transformation with green fluorescent protein (GFP) plasmid, designed two sgRNAs for an allergen gene, Ara h 2, and tested their efficiency by in vitro digestion with Cas9. Finally, through deep-sequencing analysis, several edits were identified in our target gene after PEG-mediated transformation in protoplasts with a Cas9 and sgRNA-containing vector. These findings demonstrated that a polyethylene glycol (PEG)-mediated protoplast transformation system can serve as a rapid and effective tool for transient expression assays and sgRNA validation in peanut.

Keywords: genome editing; isolation transformation; protoplast isolation; allergen gene; gene; transformation

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.