LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Narrow Genetic Diversity of Wolbachia Symbionts in Acrididae Grasshopper Hosts (Insecta, Orthoptera)

Photo from wikipedia

Bacteria of the Wolbachia genus are maternally inherited symbionts of Nematoda and numerous Arthropoda hosts. There are approximately 20 lineages of Wolbachia, which are called supergroups, and they are designated… Click to show full abstract

Bacteria of the Wolbachia genus are maternally inherited symbionts of Nematoda and numerous Arthropoda hosts. There are approximately 20 lineages of Wolbachia, which are called supergroups, and they are designated alphabetically. Wolbachia strains of the supergroups A and B are predominant in arthropods, especially in insects, and supergroup F seems to rank third. Host taxa have been studied very unevenly for Wolbachia symbionts, and here, we turn to one of largely unexplored insect families: Acrididae. On the basis of five genes subject to multilocus sequence typing, we investigated the incidence and genetic diversity of Wolbachia in 41 species belonging three subfamilies (Gomphocerinae, Oedipodinae, and Podisminae) collected in Turkey, Kazakhstan, Tajikistan, Russia, and Japan, making 501 specimens in total. Our results revealed a high incidence and very narrow genetic diversity of Wolbachia. Although only the strains belonging to supergroups A and B are commonly present in present, the Acrididae hosts here proved to be infected with supergroups B and F without A-supergroup variants. The only trace of an A-supergroup lineage was noted in one case of an inter-supergroup recombinant haplotype, where the ftsZ gene came from supergroup A, and the others from supergroup B. Variation in the Wolbachia haplotypes in Acrididae hosts within supergroups B and F was extremely low. A comprehensive genetic analysis of Wolbachia diversity confirmed specific features of the Wolbachia allelic set in Acrididae hosts. This result can help to elucidate the crucial issue of Wolbachia biology: the route(s) and mechanism(s) of Wolbachia horizontal transmission.

Keywords: narrow genetic; wolbachia symbionts; diversity wolbachia; genetic diversity; wolbachia; diversity

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.