LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combined Modification of Fiber Materials by Enzymes and Metal Nanoparticles for Chemical and Biological Protection

Photo from wikipedia

To obtain fiber materials with pronounced chemical-biological protection, metal (Zn or Ta) nanoparticles were jointly applied with polyelectrolyte complexes of enzymes and polypeptides being their stabilizers. Computer modeling revealed the… Click to show full abstract

To obtain fiber materials with pronounced chemical-biological protection, metal (Zn or Ta) nanoparticles were jointly applied with polyelectrolyte complexes of enzymes and polypeptides being their stabilizers. Computer modeling revealed the preferences between certain polyelectrolyte partners for N-acyl-homoserine lactone acylase and hexahistidine-tagged organophosphorus hydrolase (His6-OPH) possessing the quorum quenching (QQ) behavior with bacterial cells. The combinations of metal nanoparticles and enzymes appeared to function better as compared to the combinations of the same QQ-enzymes with antibiotics (polymyxins), making it possible to decrease the applied quantities by orders of magnitude while giving the same effect. The elimination of Gram-positive and Gram-negative bacterial cells from doubly modified fiber materials notably increased (up to 2.9-fold), whereas His6-OPH retained its hydrolytic activity in reaction with organophosphorus compounds (up to 74% of initially applied activity). Materials with the certain enzyme and Zn nanoparticles were more efficient against Bacillus subtilis cells (up to 2.1-fold), and Ta nanoparticles acted preferentially against Escherichia coli (up to 1.5-fold). Some materials were proved to be more suitable for combined modification by metal nanoparticles and His6-OPH complexes as antimicrobial protectants.

Keywords: combined modification; fiber materials; metal nanoparticles; chemical biological; biological protection

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.