LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insulin-like Growth Factor 1 Promotes Cell Proliferation by Downregulation of G-Protein-Coupled Receptor 17 Expression via PI3K/Akt/FoxO1 Signaling in SK-N-SH Cells

Photo by ospanali from unsplash

Insulin-like growth factor 1 (IGF-1) not only regulates neuronal function and development but also is neuroprotective in the setting of acute ischemic stroke. G-protein-coupled receptor 17 (GPR17) expression in brain… Click to show full abstract

Insulin-like growth factor 1 (IGF-1) not only regulates neuronal function and development but also is neuroprotective in the setting of acute ischemic stroke. G-protein-coupled receptor 17 (GPR17) expression in brain tissue serves as an indicator of brain damage. As whether IGF-1 regulates GPR17 expression remains unknown, the aim of this study is to investigate how IGF-1 regulates GPR17 expression in vitro. Human neuroblastoma SK-N-SH cells were used. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to mediate the silencing of FoxO1, while adenoviral vectors were used for its overexpression. Verification of the relevant signaling cascade was performed using a FoxO1 inhibitor (AS1842856), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), and a GPR17 antagonist (cangrelor). Cell proliferation was analyzed using EdU staining; immunofluorescence staining was used to detect the expression and subcellular localization of FoxO1. Chromatin immunoprecipitation was used to analyze the binding of FoxO1 to the GPR17 promoter in SK-N-SH cells. The expression of FoxO1, GPR17, and protein kinase B (also known as Akt) mRNA and protein as well as the levels of FoxO1 and Akt phosphorylation were investigated in this study. IGF-1 was found to downregulate FoxO1 and GPR17 expression in SK-N-SH cells while promoting cell viability and proliferation. Inhibition of FoxO1 and antagonism of GPR17 were found to play a role similar to that of IGF-1. Silencing of FoxO1 by lentivirus-mediated shRNA resulted in the downregulation of FoxO1 and GPR17 expression. The overexpression of FoxO1 via adenoviral vectors resulted in the upregulation of FoxO1 and GPR17 expression. Blocking of PI3K signaling by LY294002 inhibited the effect of IGF-1 on GPR17 suppression. Results from chromatin immunoprecipitation revealed that IGF-1 promotes FoxO1 nuclear export and reduces FoxO1 binding to the GPR17 promoter in SK-N-SH cells. Here, we conclude that IGF-1 enhances cell viability and proliferation in SK-N-SH cells via the promotion of FoxO1 nuclear export and reduction of FoxO1 binding to the GPR17 promoter via PI3K/Akt signaling. Our findings suggest that the enhancement of IGF-1 signaling to antagonize GPR17 serves as a potential therapeutic strategy in the management of acute ischemic stroke.

Keywords: pi3k; gpr17 expression; expression; gpr17; foxo1; igf

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.