In recent decades, as a subclass of biomaterials, biologically sensitive nanoparticles have attracted increased scientific interest. Many of the demands for physiologically responsive nanomaterials in applications involving the human body… Click to show full abstract
In recent decades, as a subclass of biomaterials, biologically sensitive nanoparticles have attracted increased scientific interest. Many of the demands for physiologically responsive nanomaterials in applications involving the human body cannot be met by conventional technologies. Due to the field’s importance, considerable effort has been expended, and biologically responsive nanomaterials have achieved remarkable success thus far. This review summarizes the recent advancements in biologically responsive nanomaterials and their applications in biosensing and molecular imaging. The nanomaterials change their structure or increase the chemical reaction ratio in response to specific bio-relevant stimuli (such as pH, redox potentials, enzyme kinds, and concentrations) in order to improve the signal for biologically responsive diagnosis. We use various case studies to illustrate the existing issues and provide a clear sense of direction in this area. Furthermore, the limitations and prospects of these nanomaterials for diagnosis are also discussed.
               
Click one of the above tabs to view related content.