The vibration spectroscopy (Raman and infrared) of widely concerned molecules in sulfur corrosion phenomenon (Dibenzyl Disulfide, Dibenzyl Sulphide, and Bibenzyl) is detailedly analyzed based on density functional theory and experimental… Click to show full abstract
The vibration spectroscopy (Raman and infrared) of widely concerned molecules in sulfur corrosion phenomenon (Dibenzyl Disulfide, Dibenzyl Sulphide, and Bibenzyl) is detailedly analyzed based on density functional theory and experimental measurement. The dominant conformations of these molecules are determined according to Boltzmann distribution in relative Gibbs free energy. Additionally, noncovalent interaction analysis is conducted to indicate intramolecular interaction. Vibration normal mode is assigned based on potential energy distribution, which comprehensively reveals the molecular vibrational behaviors. Conformations weighted spectra are obtained and compared with experimentally measured spectra. We found that experimental spectra are in good agreement with the theoretical spectra in B3LYP-D3(BJ)/6-311G** level with a frequency correction factor. Furthermore, the divergence among these molecules is discussed. The vibrational behavior of the methylene group in the molecule shows a trend with the presence of the sulfur atom.
               
Click one of the above tabs to view related content.