Triple-negative breast cancer (TNBC) is an aggressive cancer with limited targeted therapies. RNA aptamers, suitably chemically modified, work for therapeutic purposes in the same way as antibodies. We recently generated… Click to show full abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer with limited targeted therapies. RNA aptamers, suitably chemically modified, work for therapeutic purposes in the same way as antibodies. We recently generated 2′Fluoro-pyrimidines RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells. Here, we optimized three of them by shortening and proved the truncated aptamers as optimal candidates to enable active targeting to TNBC. By using prediction of secondary structure to guide truncation, we identified structural regions that account for the binding motifs of the full-length aptamers. Their chemical synthesis led to short aptamers with superb nuclease resistance, which specifically bind to TNBC target cells and rapidly internalize into acidic compartments. They interfere with the growth of TNBC cells as mammospheres, thus confirming their potential as anti-tumor agents. We propose sTN145, sTN58 and sTN29 aptamers as valuable tools for selective TNBC targeting and promising candidates for effective treatments, including therapeutic agents and targeted delivery nanovectors.
               
Click one of the above tabs to view related content.