LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas

Photo from wikipedia

Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and… Click to show full abstract

Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and host immune response in case of infections. The Pseudomonas genus is characterised by species producing strong biofilms difficult to be eradicated and by an extraordinary metabolic versatility which may support energy and carbon/nitrogen assimilation under multiple environmental conditions. Nutrient availability can be perceived by a Pseudomonas biofilm which, in turn, readapts its metabolism to finally tune its own formation and dispersion. A growing number of papers is now focusing on the mechanism of nutrient perception as a possible strategy to weaken the biofilm barrier by environmental cues. One of the most important nutrients is amino acid L-arginine, a crucial metabolite sustaining bacterial growth both as a carbon and a nitrogen source. Under low-oxygen conditions, L-arginine may also serve for ATP production, thus allowing bacteria to survive in anaerobic environments. L-arginine has been associated with biofilms, virulence, and antibiotic resistance. L-arginine is also a key precursor of regulatory molecules such as polyamines, whose involvement in biofilm homeostasis is reported. Given the biomedical and biotechnological relevance of biofilm control, the state of the art on the effects mediated by the L-arginine nutrient on biofilm modulation is presented, with a special focus on the Pseudomonas biofilm. Possible biotechnological and biomedical applications are also discussed.

Keywords: biofilm modulation; biofilm; modulation example; sensing biofilm; nutrient sensing

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.