LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Types and Applications of Nicking Enzyme-Combined Isothermal Amplification

Photo by 8moments from unsplash

Due to the sudden outbreak of COVID-19 at the end of 2019, rapid detection has become an urgent need for community clinics and hospitals. The rapid development of isothermal amplification… Click to show full abstract

Due to the sudden outbreak of COVID-19 at the end of 2019, rapid detection has become an urgent need for community clinics and hospitals. The rapid development of isothermal amplification detection technology for nucleic acids in the field of molecular diagnostic point-of-care testing (POCT) has gained a great deal of attention in recent years. Thanks to intensive research on nicking enzymes, nicking enzyme-combined isothermal amplification has become a promising platform for rapid detection. This is a novel technique that uses nicking enzymes to improve ordinary isothermal amplification. It has garnered significant interest as it overcomes the complexity of traditional molecular diagnostics and is not subject to temperature limitations, relying on cleavage enzymes to efficiently amplify targets in a very short time to provide a high level of amplification efficiency. In recent years, several types of nicking enzyme-combined isothermal amplification have been developed and they have shown great potential in molecular diagnosis, immunodiagnosis, biochemical identification, and other fields. However, this kind of amplification has some disadvantages. In this review, the principles, advantages and disadvantages, and applications of several nicking enzyme-combined isothermal amplification techniques are reviewed and the prospects for the development of these techniques are also considered.

Keywords: enzyme combined; amplification; nicking enzyme; isothermal amplification; combined isothermal

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.