LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pilot Study on Acute Effects of Pharmacological Intraperitoneal L-Homoarginine on Homeostasis of Lysine and Other Amino Acids in a Rat Model of Isoprenaline-Induced Takotsubo Cardiomyopathy

Photo from wikipedia

L-Arginine:glycine amidinotransferase (AGAT) catalyzes the formation of L-homoarginine (hArg) and L-ornithine (Orn) from L-arginine (Arg) and L-lysine (Lys): Arg + Lys ↔ hArg + Orn; equilibrium constant KhArg. AGAT also… Click to show full abstract

L-Arginine:glycine amidinotransferase (AGAT) catalyzes the formation of L-homoarginine (hArg) and L-ornithine (Orn) from L-arginine (Arg) and L-lysine (Lys): Arg + Lys ↔ hArg + Orn; equilibrium constant KhArg. AGAT also catalyzes the formation of guanidinoacetate (GAA) and Orn from Arg and glycine (Gly): Arg + Gly ↔ GAA + Orn; equilibrium constant KGAA. In humans, pharmacological hArg is metabolized to Lys. Low circulating and low excretory concentrations of hArg are associated with worse outcomes and mortality in the renal and cardiovascular systems. The metabolism and pharmacology of hArg have been little investigated. In the present study, we investigated the effects of pharmacological hArg (i.p., 0, 20, 220, 440 mg/kg at time point 0 min) on amino acids homeostasis in a rat model of isoprenaline-induced takotsubo cardiomyopathy (i.p., 50 mg/kg at time point 15 min). We measured by gas chromatography-mass spectrometry free and proteinic amino acids, as well as the polyamines putrescine and spermidine in the heart, lung, kidney, and liver of ten rats sacrificed at various time points (range, 0 to 126 min). hArg administration resulted in multiple changes in the tissue contents of several free and proteinic amino acids, as well as in the putrescine-spermidine molar ratio, an indicator of polyamines catabolism. Our results suggest that Lys and Arg are major metabolites of pharmacological hArg. Kidneys and heart seem to play a major metabolic role for hArg. Circulating Lys does not change over time, yet there is a considerable interchange of free Lys between organs, notably kidney and heart, during the presence of isoprenaline in the rats (time range, 15 to 90 min). Antidromic changes were observed for KhArg and KGAA, notably in the heart in this time window. Our study shows for the first time that free hArg and sarcosine (N-methylglycine) are positively associated with each other. The acute effects of high-dosed hArg administration and isoprenaline on various amino acids and on AGAT-catalyzed reaction in the heart, lung, kidney, and liver are detailed and discussed.

Keywords: amino acids; time; isoprenaline; heart; harg

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.