LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimizing Chain Topology of Bottle Brush Copolymer for Promoting the Disorder-to-Order Transition

Photo from wikipedia

The order-disorder transitions (ODT) of core-shell bottle brush copolymer and its structural isomers were investigated by dissipative particle dynamics simulations and theoretically by random phase approximation. Introducing a chain topology… Click to show full abstract

The order-disorder transitions (ODT) of core-shell bottle brush copolymer and its structural isomers were investigated by dissipative particle dynamics simulations and theoretically by random phase approximation. Introducing a chain topology parameter λ which parametrizes linking points between M diblock chains each with N monomers, the degree of incompatibility at ODT ((χN)ODT; χ being the Flory–Huggins interaction parameter between constituent monomers) was predicted as a function of chain topology parameter (λ) and the number of linked diblock chains per bottle brush copolymer (M). It was found that there exists an optimal chain topology about λ at which (χN)ODT gets a minimum while the domain spacing remains nearly unchanged. The prediction provides a theoretical guideline for designing an optimal copolymer architecture capable of forming sub-10 nm periodic structures even with non-high χ components.

Keywords: topology; brush copolymer; chain topology; bottle brush

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.