LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Construction and Analysis of Disuse Atrophy Model of the Gastrocnemius Muscle in Chicken

Photo from wikipedia

Disuse muscle atrophy is identified as the physiological, biochemical, morphological, and functional changes during restricted movement, immobilization, or weightlessness. Although its internal mechanism has been extensively studied in mammals and… Click to show full abstract

Disuse muscle atrophy is identified as the physiological, biochemical, morphological, and functional changes during restricted movement, immobilization, or weightlessness. Although its internal mechanism has been extensively studied in mammals and was thought to be mainly related to oxidative stress, it was unclear whether it behaved consistently in non-mammals such as chickens. In this study, we tried to construct a disuse atrophy model of the gastrocnemius muscle in chickens by limb immobilization, and collected the gastrocnemius muscles of the fixed group and the control group for RNA sequencing. Through analysis of muscle loss, HE staining, immunohistochemistry, and oxidative stress level, we found that limb immobilization could lead to loss of muscle mass, decrease in muscle fiber diameter, decrease in the proportion of slow muscle fibers, and increase in the proportion of fast muscle fibers, and also cause elevated levels of oxidative stress. In addition, a total of 565 different expression genes (DEGs) were obtained by RNA sequencing, which was significantly enriched in the biological processes such as cell proliferation and apoptosis, reactive oxygen species metabolism, and fast and slow muscle fiber transformation, and it showed that the FOXO signaling pathway, closely related to muscle atrophy, was activated. In brief, we initially confirmed that limb immobilization could induce disuse atrophy of skeletal muscle, and oxidative stress was involved in the process of disuse muscle atrophy.

Keywords: atrophy model; oxidative stress; muscle; disuse atrophy; atrophy

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.