LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

eIF4A1 Inhibitor Suppresses Hyperactive mTOR-Associated Tumors by Inducing Necroptosis and G2/M Arrest

Photo from wikipedia

Aberrantly activated mechanistic target of rapamycin (mTOR) signaling pathway stimulates translation initiation/protein synthesis and eventually causes tumors. Targeting these processes thus holds potential for treating mTOR-associated diseases. We tested the… Click to show full abstract

Aberrantly activated mechanistic target of rapamycin (mTOR) signaling pathway stimulates translation initiation/protein synthesis and eventually causes tumors. Targeting these processes thus holds potential for treating mTOR-associated diseases. We tested the potential of eFT226, a sequence-selective inhibitor of eIF4A-mediated translation, in the treatment of mTOR hyperactive cells caused by the deletion of tuberous sclerosis complex 1/2 (TSC1/2) or phosphatase and TENsin homology (PTEN). eFT226 preferentially inhibited the proliferation of Tsc2- and Pten-deficient cells by inducing necroptosis and G2/M phase arrest. In addition, eFT226 blocked the development of TSC2-deficient tumors. The translation initiation inhibitor is thus a promising regimen for the treatment of hyperactive mTOR-mediated tumors.

Keywords: hyperactive mtor; inhibitor; mtor associated; inducing necroptosis; mtor

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.