LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Derivation and Characterization of Endothelial Cells from Porcine Induced Pluripotent Stem Cells

Photo from wikipedia

Although the study on the regulatory mechanism of endothelial differentiation from the perspective of development provides references for endothelial cell (EC) derivation from pluripotent stem cells, incomplete reprogramming and donor-specific… Click to show full abstract

Although the study on the regulatory mechanism of endothelial differentiation from the perspective of development provides references for endothelial cell (EC) derivation from pluripotent stem cells, incomplete reprogramming and donor-specific epigenetic memory are still thought to be the obstacles of iPSCs for clinical application. Thus, it is necessary to establish a stable iPSC-EC induction system and investigate the regulatory mechanism of endothelial differentiation. Based on a single-layer culture system, we successfully obtained ECs from porcine iPSCs (piPSCs). In vitro, the derived piPSC-ECs formed microvessel-like structures along 3D gelatin scaffolds. Under pathological conditions, the piPSC-ECs functioned on hindlimb ischemia repair by promoting blood vessel formation. To elucidate the molecular events essential for endothelial differentiation in our model, genome-wide transcriptional profile analysis was conducted, and we found that during piPSC-EC derivation, the synthesis and secretion level of TGF-β as well as the phosphorylation level of Smad2/3 changed dynamically. TGF-β-Smad2/3 signaling activation promoted mesoderm formation and prevented endothelial differentiation. Understanding the regulatory mechanism of iPSC-EC derivation not only paves the way for further optimization, but also provides reference for establishing a cardiovascular drug screening platform and revealing the molecular mechanism of endothelial dysfunction.

Keywords: derivation; pluripotent stem; mechanism; endothelial differentiation; stem cells

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.