LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Per1/Per2 Disruption Reduces Testosterone Synthesis and Impairs Fertility in Elderly Male Mice

Photo by alice02 from unsplash

Circadian rhythm disorders caused by genetic or environmental factors lead to decreased male fertility but the mechanisms are poorly understood. The current study reports that the mechanism of Per1/Per2 Double… Click to show full abstract

Circadian rhythm disorders caused by genetic or environmental factors lead to decreased male fertility but the mechanisms are poorly understood. The current study reports that the mechanism of Per1/Per2 Double knockout (DKO) reduced the reproductive capacity of elderly male mice. The sperm motility and spermatogenic capacity of male DKO mice were weak. Hormone-targeted metabolomics showed reduced plasma levels of free testosterone in DKO male mice compared with WT male mice. Transcriptomic analysis of testicular tissue showed the down-regulation of testosterone synthesis-related enzymes (Cyp11a1, Cyp17a1, Hsd17b3, Hsd3b1, and Star) in the steroid hormone synthesis pathway. Spermatogenesis genes, Tubd1 and Pafah1b were down-regulated, influencing tubulin dynamics and leading to impaired motility. Seleno-compound metabolic loci, Scly and Sephs2, were up-regulated and Slc7a11 and Selenop were down-regulated. Western-blotting showed that steroid acute regulatory protein (StAR) and p-CREB, PKA and AC1 were reduced in testicular tissue of DKO mice compared to WT. Therefore, Per1/Per2 disruption reduced testosterone synthesis and sperm motility by affecting the PKA-StAR pathway, leading to decreased fertility.

Keywords: fertility; per1 per2; testosterone synthesis; mice; male mice

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.