LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of Spliceogenic Variants beyond Canonical GT-AG Splice Sites in Hereditary Cancer Genes

Photo from wikipedia

Pathogenic/likely pathogenic variants in susceptibility genes that interrupt RNA splicing are a well-documented mechanism of hereditary cancer syndromes development. However, if RNA studies are not performed, most of the variants… Click to show full abstract

Pathogenic/likely pathogenic variants in susceptibility genes that interrupt RNA splicing are a well-documented mechanism of hereditary cancer syndromes development. However, if RNA studies are not performed, most of the variants beyond the canonical GT-AG splice site are characterized as variants of uncertain significance (VUS). To decrease the VUS burden, we have bioinformatically evaluated all novel VUS detected in 732 consecutive patients tested in the routine genetic counseling process. Twelve VUS that were predicted to cause splicing defects were selected for mRNA analysis. Here, we report a functional characterization of 12 variants located beyond the first two intronic nucleotides using RNAseq in APC, ATM, FH, LZTR1, MSH6, PALB2, RAD51C, and TP53 genes. Based on the analysis of mRNA, we have successfully reclassified 50% of investigated variants. 25% of variants were downgraded to likely benign, whereas 25% were upgraded to likely pathogenic leading to improved clinical management of the patient and the family members.

Keywords: canonical splice; beyond canonical; hereditary cancer; variants beyond

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.