LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Basis for Luteolin as a Natural TatD DNase Inhibitor in Trueperella pyogenes

Photo by erol from unsplash

TatD960 and TatD825 are DNases that contribute to biofilm formation and virulence in Trueperella pyogenes (T. pyogenes). Luteolin is a natural flavonoid commonly found in plants that exhibits antimicrobial capacity.… Click to show full abstract

TatD960 and TatD825 are DNases that contribute to biofilm formation and virulence in Trueperella pyogenes (T. pyogenes). Luteolin is a natural flavonoid commonly found in plants that exhibits antimicrobial capacity. Our study aims to investigate the effects of luteolin on TatD DNases as a natural inhibitor. In this research, the expression of tatD genes and TatD proteins in T. pyogenes treated with luteolin was detected, and then the effect of luteolin on the hydrolysis of DNA by TatD DNases was analyzed using agarose gel electrophoresis. Moreover, the interactions between luteolin and TatD DNases were tested using surface plasmon resonance (SPR) assays and molecular docking analysis. After 1/2 MIC luteolin treatment, the transcription of tatD genes and expression of TatD proteins appeared to be reduced in 80–90% of T. pyogenes (n = 20). The gel assay revealed that luteolin can inhibit the activity of TatD DNases. The SPR assay showed that the KD values of luteolin to TatD960 and TatD825 were 6.268 × 10−6 M and 5.654 × 10−6 M, respectively. We found through molecular docking that hydrogen bonding is predominant in the interaction of luteolin and TatD DNases. Our data indicate that luteolin inhibited the ability of TatD DNases by decreasing their binding to DNA. The current study provides an insight into the development of luteolin as a DNase inhibitor in preventing biofilm formation and virulence in T. pyogenes.

Keywords: trueperella pyogenes; luteolin natural; inhibitor; tatd dnases; tatd

Journal Title: International Journal of Molecular Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.